Regression-Based Image Alignment for General Object Categories
نویسندگان
چکیده
Gradient-descent methods have exhibited fast and reliable performance for image alignment in the facial domain, but have largely been ignored by the broader vision community. They require the image function be smooth and (numerically) differentiable – properties that hold for pixel-based representations obeying natural image statistics, but not for more general classes of non-linear feature transforms. We show that transforms such as Dense SIFT can be incorporated into a Lucas Kanade alignment framework by predicting descent directions via regression. This enables robust matching of instances from general object categories whilst maintaining desirable properties of Lucas Kanade such as the capacity to handle high-dimensional warp parametrizations and a fast rate of convergence. We present alignment results on a number of objects from ImageNet, and an extension of the method to unsupervised joint alignment of objects from a corpus of images.
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملUsing a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملRecognizing multiple objects based on co-occurrence of categories
Most previous methods for generic object recognition explicitly or implicitly assume that an image contains objects from a single category, although objects from multiple categories often appear together in an image. In this paper, we present a novel method for object recognition that explicitly deals with objects of multiple categories coexisting in an image. Furthermore, our proposed method a...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کامل$omega$-Operads of coendomorphisms and fractal $omega$-operads for higher structures
In this article we introduce the notion of textit{Fractal $omega$-operad} emerging from a natural $omega$-operad associated to any coglobular object in the category of higher operads in Batanin's sense, which in fact is a coendomorphism $omega$-operads. We have in mind coglobular object of higher operads which algebras are kind of higher transformations. It follows that this natural $omeg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1407.1957 شماره
صفحات -
تاریخ انتشار 2014